A Fatigue Life Prediction Method Based on Strain Intensity Factor

نویسندگان

  • Wei Zhang
  • Huili Liu
  • Qiang Wang
  • Jingjing He
چکیده

In this paper, a strain-intensity-factor-based method is proposed to calculate the fatigue crack growth under the fully reversed loading condition. A theoretical analysis is conducted in detail to demonstrate that the strain intensity factor is likely to be a better driving parameter correlated with the fatigue crack growth rate than the stress intensity factor (SIF), especially for some metallic materials (such as 316 austenitic stainless steel) in the low cycle fatigue region with negative stress ratios R (typically R = -1). For fully reversed cyclic loading, the constitutive relation between stress and strain should follow the cyclic stress-strain curve rather than the monotonic one (it is a nonlinear function even within the elastic region). Based on that, a transformation algorithm between the SIF and the strain intensity factor is developed, and the fatigue crack growth rate testing data of 316 austenitic stainless steel and AZ31 magnesium alloy are employed to validate the proposed model. It is clearly observed that the scatter band width of crack growth rate vs. strain intensity factor is narrower than that vs. the SIF for different load ranges (which indicates that the strain intensity factor is a better parameter than the stress intensity factor under the fully reversed load condition). It is also shown that the crack growth rate is not uniquely determined by the SIF range even under the same R, but is also influenced by the maximum loading. Additionally, the fatigue life data (strain-life curve) of smooth cylindrical specimens are also used for further comparison, where a modified Paris equation and the equivalent initial flaw size (EIFS) are involved. The results of the proposed method have a better agreement with the experimental data compared to the stress intensity factor based method. Overall, the strain intensity factor method shows a fairly good ability in calculating the fatigue crack propagation, especially for the fully reversed cyclic loading condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy-Based Prediction of Low-Cycle Fatigue Life of CK45 Steel and SS316 Stainless Steel

In this paper, low cycle fatigue life of CK45 steel and SS316 stainless steel under strain-controlled loading are experimentally investigated. In addition, the impact of mean strain and strain amplitude on the fatigue life and cyclic behavior of the materials are studied. Furthermore, it is attempted to predict fatigue life using energy and SWT damage parameters. The experimental results demons...

متن کامل

Fatigue Life Prediction of Rivet Joints

Strength reduction in structures like an aircraft could be resulted as cyclic loads over a period of time and is an important factor for structural life prediction. Service loads are emphasized at the regions of stress concentration, mostly at the connection of components. The initial flaw prompting the service life was expected by using the Equivalent Initial Flaw Size (EIFS) which has been re...

متن کامل

A new low cycle fatigue lifetime prediction model for magnesium alloy based on modified plastic strain energy approach

Nowadays, the technology intends to use materials such as magnesium alloys due to their high strength to weight ratio in engine components. As usual, engine cylinder heads and blocks has made of various types of cast irons and aluminum alloys. However, magnesium alloys has physical and mechanical properties near to aluminum alloys and reduce the weight up to 40 percents. In this article, a new ...

متن کامل

A New Strain Based Model for Predicting Multiaxial Fatigue Life of Metals

Engineering structures are usually exposed to cyclic multiaxial loading and subsequently to multiaxial fatigue. Different models and criteria with various capabilities have been proposed for predicting of multiaxial fatigue life. Selection of proper model by considering material, type of loading and operation condition of each engineering structure is a challenging issue of the life prediction ...

متن کامل

Evaluation of Fatigue Properties of Asphalt Mixtures Containing Reclaimed Asphalt using Response Surface Method

This paper presents the effects of different amounts of reclaimed asphalt on fatigue life of asphalt mixtures. Central composite method was used to design of experiments based on response surface method (RSM). Binder type (Pen 60/70 and Pen 85/100), reclaimed asphalt pavement (RAP) content (25, 50 and 75%) and loading strain (150, 250 and 350 micro strain) were selected as independent variables...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017